These resources will be removed by end of Summer Term 2025.
Switch to our new teaching resources now - designed by teachers and leading subject experts, and tested in classrooms.
Lesson details
Key learning points
- In this lesson, we will learn about the difference of two squares. We will investigate the pattern of results when considering multiplying out brackets of the general form (x+a)(x-a).
Licence
This content is made available by Oak National Academy Limited and its partners and licensed under Oak’s terms & conditions (Collection 1), except where otherwise stated.
Loading...
6 Questions
Q1.
Choose the word which best fills the gap: When we ________ double brackets every term in the first bracket must be multiplied by every term in the second bracket.
divide
express
factorise
Q2.
Expand and simplify (x+2)(x+5)
18x²
x² + 10
x² + 17x
Q3.
Expand and simplify (x+2)(x-5)
x² - 10
x² - 7x + 10
x² + 3x + 10
Q4.
Expand and simplify 2(x+3)-2(x+5)
-4x
2x² - 6x + 20
None of the answers above.
Q5.
A rectangle has side lengths (x+4) and (x-3). Match the expression that would represent it's area.
20x²
x² - x + 12
x² + 7x - 12
Q6.
Yasmin expanded (a + x + 3)(x + 2). Below are her workings out. Which expression matches the area of the rectangle she has created?
13ax²
ax² + 7ax + 6
x² + a + 5x + 8a
6 Questions
Q1.
Which expression is equivalent to a² - b² ?
(a - b)(a - b)
2ab
ab
Q2.
Match the expression equivalent to (x+4)(x-4).
x² - 16x
x² - 4
x² - 8x + 16
x² + 4²
Q3.
Match the expression equivalent to (x+9)(x-3).
x² - 3²
x² - 6²
x² + 3x - 27
Q4.
Which calculation would work out 64² - 4² ?
(8 x 2)²
60 x 60
72 x 6
Q5.
Match the expression equivalent to (x+25)-(x-25).
x² - 25
x² - 25²
x² + 5²
Q6.
Match the expression equivalent to (73+x)(73-x).
73 - x²
73 + x²
x² - 73
x² - 73²