The energy of objects in a gravitational field (EP=mgh)
I can calculate the change in energy of an object because of its movement in a gravitational field.
The energy of objects in a gravitational field (EP=mgh)
I can calculate the change in energy of an object because of its movement in a gravitational field.
These resources will be removed by end of Summer Term 2025.
Lesson details
Key learning points
- When an object moves upwards, work is done against the gravitational force.
- The gravitational force acting on an object does work to speed it up when it is falling.
- Weight = mass x gravitational field strength, W = mg
- Gravitational potential energy of an object = mass × gravitational field strength × height
Keywords
Gravitational store - Objects have energy in the gravitational store because of their mass and their height.
Work done - Work is done whenever a force makes an object move. The amount of work done is equal to the force multiplied by distance moved in the direction of the force.
Weight - Weight = mass × gravitational field strength, measured in newtons.
Gravitational field strength - Gravitational field strength, g, is the force per kilogram caused by a gravitational field.
Gravitational potential energy - The energy stored in an object due to its height above the ground.
Common misconception
Pupils often think that the amount of energy in the gravitational store depends on the path taken by an object to change its height, or the speed of an object at a particular height.
Teaching should include examples of objects increasing height by the same amount by different routes, and examples of objects at the same height moving at different speeds.
To help you plan your year 10 combined science lesson on: The energy of objects in a gravitational field (EP=mgh), download all teaching resources for free and adapt to suit your pupils' needs...
To help you plan your year 10 combined science lesson on: The energy of objects in a gravitational field (EP=mgh), download all teaching resources for free and adapt to suit your pupils' needs.
The starter quiz will activate and check your pupils' prior knowledge, with versions available both with and without answers in PDF format.
We use learning cycles to break down learning into key concepts or ideas linked to the learning outcome. Each learning cycle features explanations with checks for understanding and practice tasks with feedback. All of this is found in our slide decks, ready for you to download and edit. The practice tasks are also available as printable worksheets and some lessons have additional materials with extra material you might need for teaching the lesson.
The assessment exit quiz will test your pupils' understanding of the key learning points.
Our video is a tool for planning, showing how other teachers might teach the lesson, offering helpful tips, modelled explanations and inspiration for your own delivery in the classroom. Plus, you can set it as homework or revision for pupils and keep their learning on track by sharing an online pupil version of this lesson.
Explore more key stage 4 combined science lessons from the Energy of moving objects unit, dive into the full secondary combined science curriculum, or learn more about lesson planning.