Switch to our new maths teaching resources

Slide decks, worksheets, quizzes and lesson planning guidance designed for your classroom.

Play new resources video

Lesson details

Key learning points

  1. In this lesson, we will learn how to factorise basic linear expressions using area models.

Licence

This content is made available by Oak National Academy Limited and its partners and licensed under Oak’s terms & conditions (Collection 1), except where otherwise stated.

Loading...

5 Questions

Q1.
Fill in the gaps: We can ____ an expression by using the _____ property.
Add, distributive
Create, commutative
Correct answer: Expand, distributive
Factorise, commutative
Q2.
Use the distributive property to fill in the gaps: 4(10 + 5) = ____ × 10 + ____ × 5
10, 5
2, 2
Correct answer: 4, 4
4, 5
Q3.
Expand 4(n+ 5)
20n
Correct answer: 4n + 20
4n + 5
4n + 9
Q4.
Expand 8(n-3)
8n - 11
Correct answer: 8n - 24
8n - 3
8n + 24
Q5.
Expand -7(n+5).
-42n
Correct answer: -7n - 35
-7n + 35
-7n + 5

5 Questions

Q1.
Fill in the blanks: We can factorise a number or expression by writing it as a ____ of two or more _____.
Correct answer: product, factors
product, multiples
sum, factors
sum, multiples
Q2.
Fill in the blanks: a + 2 + a + 2 = _____ + _____ = 2(_____ + _____ )
Correct answer: 2a, 4, a, 2
2a, 4, a, 4
a, 4, a, 2
a, 4, a, 4
Q3.
Factorise 12x + 3.
12(x + 4)
2(6x + 1.5)
Correct answer: 3(4x + 1)
3(x + 1)
Q4.
Factorise 2y − 10.
1(2y - 10)
10(5y - 1)
2(y - 10)
Correct answer: 2(y - 5)
Q5.
Factorise −6p + 15m
-3(2p + 5m)
Correct answer: 3(-2p + 5m)
3(-3p + 5m)
6(-p + 3m)