Year 9
Representing simultaneous equations graphically (Part 1)
Year 9
Representing simultaneous equations graphically (Part 1)
These resources will be removed by end of Summer Term 2025.
Switch to our new teaching resources now - designed by teachers and leading subject experts, and tested in classrooms.
Lesson details
Key learning points
- In this lesson, we will learn how to solve simultaneous equations graphically by plotting them and identifying their point of intersection.
Licence
This content is made available by Oak National Academy Limited and its partners and licensed under Oak’s terms & conditions (Collection 1), except where otherwise stated.
5 Questions
Q1.
What are the equations of the lines in the graph?
y = -4x + 2 and y = x - 1
y = 4x - 2 and y = -x + 1
y = 4x + 2 and y = x - 1
Q2.
Estimate the point of intersection for the lines in the graph.
(-0.2, - 1.2)
(-0.2, 1.2)
(0.2, 1.2)
Q3.
How would you change y = 4x - 2 in order to increase the x-ordinate of the point of intersection?
Decrease the gradient or increase the y-intercept.
Increase the gradient or decrease the y-intercept.
Increase the gradient or the y-intercept.
Q4.
How would you change y = 4x - 2 in order to increase the y-ordinate of the point of intersection?
Decrease the gradient or increase the y-intercept.
Decrease the gradient or the y-intercept.
Increase the gradient or decrease the y-intercept.
Q5.
How would you change y = -x - 1 in order to decrease the x-ordinate of the point of intersection?
Decrease the gradient or increase the y-intercept.
Increase the gradient or decrease the y-intercept.
Increase the gradient or the y-intercept.
5 Questions
Q1.
Fill in the gaps: We can use ____ to solve simultaneous equations.
Knowledge
Numbers
Terms
Q2.
What are the coordinates of the points of intersection for y = x + 5 and y = -2x - 1?
(-2, -3)
(2, -3)
(2, 3)
Q3.
Use a graph to solve y = x + 5 and y = -2x - 1 simultaneously.
x = -2, y = -3
x = 2, y = -3
x = 2, y = 3
Q4.
Create equations for the following statements: "I'm thinking of 2 numbers that have a sum of 3", "I'm thinking of 2 numbers. I triple the first number and add the second to get -1".
x + y = 3, 2x + y = -1
y = -x + 3, y = 3x - 1
y = x + 3, y = 3x - 1
Q5.
Find the values of x and y that are true for both of the following statements: "I'm thinking of 2 numbers that have a sum of 3", "I'm thinking of 2 numbers. I triple the first number and add the second to get -1".
x = -2, y = -5
x = 2, y = -5
x = 2, y = 5